Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Catalog Knowledge Graphs for Query Attribute Identification in E-Commerce Sites (1807.04923v1)

Published 13 Jul 2018 in cs.IR

Abstract: Millions of people use online e-commerce platforms to search and buy products. Identifying attributes in a query is a critical component in connecting users to relevant items. However, in many cases, the queries have multiple attributes, and some of them will be in conflict with each other. For example, the query "maroon 5 dvds" has two candidate attributes, the color "maroon" or the band "maroon 5", where only one of the attributes can be present. In this paper, we address the problem of resolving conflicting attributes in e-commerce queries. A challenge in this problem is that knowledge bases like Wikipedia that are used to understand web queries are not focused on the e-commerce domain. E-commerce search engines, however, have access to the catalog which contains detailed information about the items and its attributes. We propose a framework that constructs knowledge graphs from catalog to resolve conflicting attributes in e-commerce queries. Our experiments on real-world queries on e-commerce platforms demonstrate that resolving conflicting attributes by leveraging catalog information significantly improves attribute identification, and also gives out more relevant search results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Suhas Ranganath (7 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.