Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling and Soft-fault Diagnosis of Underwater Thrusters with Recurrent Neural Networks (1807.04109v1)

Published 11 Jul 2018 in cs.RO, cs.LG, and stat.ML

Abstract: Noncritical soft-faults and model deviations are a challenge for Fault Detection and Diagnosis (FDD) of resident Autonomous Underwater Vehicles (AUVs). Such systems may have a faster performance degradation due to the permanent exposure to the marine environment, and constant monitoring of component conditions is required to ensure their reliability. This works presents an evaluation of Recurrent Neural Networks (RNNs) for a data-driven fault detection and diagnosis scheme for underwater thrusters with empirical data. The nominal behavior of the thruster was modeled using the measured control input, voltage, rotational speed and current signals. We evaluated the performance of fault classification using all the measured signals compared to using the computed residuals from the nominal model as features.

Citations (26)

Summary

We haven't generated a summary for this paper yet.