Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved SVD-based Initialization for Nonnegative Matrix Factorization using Low-Rank Correction (1807.04020v1)

Published 11 Jul 2018 in cs.NA, cs.LG, and stat.ML

Abstract: Due to the iterative nature of most nonnegative matrix factorization (\textsc{NMF}) algorithms, initialization is a key aspect as it significantly influences both the convergence and the final solution obtained. Many initialization schemes have been proposed for NMF, among which one of the most popular class of methods are based on the singular value decomposition (SVD). However, these SVD-based initializations do not satisfy a rather natural condition, namely that the error should decrease as the rank of factorization increases. In this paper, we propose a novel SVD-based \textsc{NMF} initialization to specifically address this shortcoming by taking into account the SVD factors that were discarded to obtain a nonnegative initialization. This method, referred to as nonnegative SVD with low-rank correction (NNSVD-LRC), allows us to significantly reduce the initial error at a negligible additional computational cost using the low-rank structure of the discarded SVD factors. NNSVD-LRC has two other advantages compared to previous SVD-based initializations: (1) it provably generates sparse initial factors, and (2) it is faster as it only requires to compute a truncated SVD of rank $\lceil r/2 + 1 \rceil$ where $r$ is the factorization rank of the sought NMF decomposition (as opposed to a rank-$r$ truncated SVD for other methods). We show on several standard dense and sparse data sets that our new method competes favorably with state-of-the-art SVD-based initializations for NMF.

Citations (41)

Summary

We haven't generated a summary for this paper yet.