Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Representation and Non-Negative Matrix Factorization for image denoise (1807.03694v1)

Published 5 Jul 2018 in cs.CV

Abstract: Recently, the problem of blind image separation has been widely investigated, especially the medical image denoise which is the main step in medical diag-nosis. Removing the noise without affecting relevant features of the image is the main goal. Sparse decomposition over redundant dictionaries become of the most used approaches to solve this problem. NMF codes naturally favor sparse, parts-based representations. In sparse representation, signals represented as a linear combination of a redundant dictionary atoms. In this paper, we propose an algorithm based on sparse representation over the redundant dictionary and Non-Negative Matrix Factorization (N-NMF). The algorithm initializes a dic-tionary based on training samples constructed from noised image, then it searches for the best representation for the source by using the approximate matching pursuit (AMP). The proposed N-NMF gives a better reconstruction of an image from denoised one. We have compared our numerical results with different image denoising techniques and we have found the performance of the proposed technique is promising. Keywords: Image denoising, sparse representation, dictionary learning, matching pursuit, non-negative matrix factorization.

Summary

We haven't generated a summary for this paper yet.