Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the structure of simple bounded weight modules of $\mathfrak{sl}(\infty)$, $\mathfrak{o}(\infty)$, $\mathfrak{sp}(\infty)$ (1807.03549v2)

Published 10 Jul 2018 in math.RT

Abstract: We study the structure of bounded simple weight $\mathfrak{sl}(\infty)$-, $\mathfrak{o}(\infty)$-, $\mathfrak{sp}(\infty)$-modules, which have been recently classified in [6]. Given a splitting parabolic subalgebra $\mathfrak{p}$ of $\mathfrak{sl}(\infty)$, $\mathfrak{o}(\infty)$, $\mathfrak{sp}(\infty)$, we introduce the concepts of $\mathfrak{p}$-aligned and pseudo $\mathfrak{p}$-aligned $\mathfrak{sl}(\infty)$-, $\mathfrak{o}(\infty)$-, $\mathfrak{sp}(\infty)$-modules, and give necessary and sufficient conditions for bounded simple weight modules to be $\mathfrak{p}$-aligned or pseudo $\mathfrak{p}$-aligned. The existence of pseudo $\mathfrak{p}$-aligned modules is a consequence of the fact that the Lie algebras considered have infinite rank.

Summary

We haven't generated a summary for this paper yet.