Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Borel-de Siebenthal theory for affine reflection systems (1807.03536v1)

Published 10 Jul 2018 in math.RA, math.CO, and math.RT

Abstract: We develop a Borel-de Siebenthal theory for affine reflection systems by classifying their maximal closed subroot systems. Affine reflection systems (introduced by Loos and Neher) provide a unifying framework for root systems of finite-dimensional semi-simple Lie algebras, affine and toroidal Lie algebras, and extended affine Lie algebras. In the special case of nullity $k$ toroidal Lie algebras, we obtain a one-to-one correspondence between maximal closed subroot systems with full gradient and triples $(q,(b_i),H)$, where $q$ is a prime number, $(b_i)$ is a $n$-tuple of integers in the interval $[0,q-1]$ and $H$ is a $(k\times k)$ Hermite normal form matrix with determinant $q$. This generalizes the $k=1$ result of Dyer and Lehrer in the setting of affine Lie algebras.

Summary

We haven't generated a summary for this paper yet.