Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Swarm Optimization To Enhance Autoencoders Images (1807.03346v1)

Published 9 Jul 2018 in cs.NE

Abstract: Autoencoders learn data representations through reconstruction. Robust training is the key factor affecting the quality of the learned representations and, consequently, the accuracy of the application that use them. Previous works suggested methods for deciding the optimal autoencoder configuration which allows for robust training. Nevertheless, improving the accuracy of a trained autoencoder has got limited, if no, attention. We propose a new approach that improves the accuracy of a trained autoencoders results and answers the following question, Given a trained autoencoder, a test image, and using a real-parameter optimizer, can we generate better quality reconstructed image version than the one generated by the autoencoder?. Our proposed approach combines both the decoder part of a trained Resitricted Boltman Machine-based autoencoder with the Competitive Swarm Optimization algorithm. Experiments show that it is possible to reconstruct images using trained decoder from randomly initialized representations. Results also show that our approach reconstructed better quality images than the autoencoder in most of the test cases. Indicating that, we can use the approach for improving the performance of a pre-trained autoencoder if it does not give satisfactory results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.