Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QUICKAR: Automatic Query Reformulation for Concept Location using Crowdsourced Knowledge (1807.02964v1)

Published 9 Jul 2018 in cs.SE

Abstract: During maintenance, software developers deal with numerous change requests made by the users of a software system. Studies show that the developers find it challenging to select appropriate search terms from a change request during concept location. In this paper, we propose a novel technique--QUICKAR--that automatically suggests helpful reformulations for a given query by leveraging the crowdsourced knowledge from Stack Overflow. It determines semantic similarity or relevance between any two terms by analyzing their adjacent word lists from the programming questions of Stack Overflow, and then suggests semantically relevant queries for concept location. Experiments using 510 queries from two software systems suggest that our technique can improve or preserve the quality of 76% of the initial queries on average which is promising. Comparison with one baseline technique validates our preliminary findings, and also demonstrates the potential of our technique.

Citations (26)

Summary

We haven't generated a summary for this paper yet.