Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Scale Coarse-to-Fine Segmentation for Screening Pancreatic Ductal Adenocarcinoma (1807.02941v2)

Published 9 Jul 2018 in cs.CV

Abstract: We propose an intuitive approach of detecting pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, by checking abdominal CT scans. Our idea is named multi-scale segmentation-for-classification, which classifies volumes by checking if at least a sufficient number of voxels is segmented as tumors, by which we can provide radiologists with tumor locations. In order to deal with tumors with different scales, we train and test our volumetric segmentation networks with multi-scale inputs in a coarse-to-fine flowchart. A post-processing module is used to filter out outliers and reduce false alarms. We collect a new dataset containing 439 CT scans, in which 136 cases were diagnosed with PDAC and 303 cases are normal, which is the largest set for PDAC tumors to the best of our knowledge. To offer the best trade-off between sensitivity and specificity, our proposed framework reports a sensitivity of 94.1% at a specificity of 98.5%, which demonstrates the potential to make a clinical impact.

Citations (89)

Summary

We haven't generated a summary for this paper yet.