Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vulnerability Analysis of Chest X-Ray Image Classification Against Adversarial Attacks (1807.02905v2)

Published 9 Jul 2018 in cs.CV

Abstract: Recently, there have been several successful deep learning approaches for automatically classifying chest X-ray images into different disease categories. However, there is not yet a comprehensive vulnerability analysis of these models against the so-called adversarial perturbations/attacks, which makes deep models more trustful in clinical practices. In this paper, we extensively analyzed the performance of two state-of-the-art classification deep networks on chest X-ray images. These two networks were attacked by three different categories (ten methods in total) of adversarial methods (both white- and black-box), namely gradient-based, score-based, and decision-based attacks. Furthermore, we modified the pooling operations in the two classification networks to measure their sensitivities against different attacks, on the specific task of chest X-ray classification.

Citations (52)

Summary

We haven't generated a summary for this paper yet.