Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Abnormality Detection inside Blood Vessels with Mobile Nanomachines (1807.02728v1)

Published 8 Jul 2018 in cs.IT and math.IT

Abstract: Motivated by the numerous healthcare applications of molecular communication within Internet of Bio-Nano Things (IoBNT), this work addresses the problem of abnormality detection in a blood vessel using multiple biological embedded computing devices called cooperative biological nanomachines (CNs), and a common receiver called the fusion center (FC). Due to blood flow inside a vessel, each CN and the FC are assumed to be mobile. In this work, each of the CNs perform abnormality detection with certain probabilities of detection and false alarm by counting the number of molecules received from a source, e.g., infected tissue. These CNs subsequently report their local decisions to a FC over a diffusion-advection blood flow channel using different types of molecules in the presence of inter-symbol interference, multi-source interference, and counting errors. Due to limited computational capability at the FC, OR and AND logic based fusion rules are employed to make the final decision after obtaining each local decision based on the optimal likelihood ratio test. For the aforementioned system, probabilities of detection and false alarm at the FC are derived for OR and AND fusion rules. Finally, simulation results are presented to validate the derived analytical results, which provide important insights.

Citations (34)

Summary

We haven't generated a summary for this paper yet.