Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on characterizations of relative amenability on finite von Neumann algebras (1807.01905v1)

Published 5 Jul 2018 in math.OA

Abstract: In this paper, we give another two characterizations of relative amenability on finite von Neumann algebras, one of which can be thought of as an analogue of injective operator systems. As an application, we prove a stable property of relative amenable inclusions. We prove that under certain assumptions, the inclusion $N=\int_{X} \bigoplus N_{p} d \mu\subset M=\int_{X} \bigoplus M_{p} d \mu$ is amenable if and only if $N_p\subset M_p$ is amenable almost everywhere.

Summary

We haven't generated a summary for this paper yet.