Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Ball Recycling (1807.01804v2)

Published 4 Jul 2018 in cs.DS

Abstract: Balls-and-bins games have been a wildly successful tool for modeling load balancing problems. In this paper, we study a new scenario, which we call the ball recycling game, defined as follows: Throw m balls into n bins i.i.d. according to a given probability distribution p. Then, at each time step, pick a non-empty bin and recycle its balls: take the balls from the selected bin and re-throw them according to p. This balls-and-bins game closely models memory-access heuristics in databases. The goal is to have a bin-picking method that maximizes the recycling rate, defined to be the expected number of balls recycled per step in the stationary distribution. We study two natural strategies for ball recycling: Fullest Bin, which greedily picks the bin with the maximum number of balls, and Random Ball, which picks a ball at random and recycles its bin. We show that for general p, Random Ball is constant-optimal, whereas Fullest Bin can be pessimal. However, when p = u, the uniform distribution, Fullest Bin is optimal to within an additive constant.

Citations (9)

Summary

We haven't generated a summary for this paper yet.