Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Option Pricing with Heavy-Tailed Distributions of Logarithmic Returns (1807.01756v3)

Published 4 Jul 2018 in q-fin.PR

Abstract: A growing body of literature suggests that heavy tailed distributions represent an adequate model for the observations of log returns of stocks. Motivated by these findings, here we develop a discrete time framework for pricing of European options. Probability density functions of log returns for different periods are conveniently taken to be convolutions of the Student's t-distribution with three degrees of freedom. The supports of these distributions are truncated in order to obtain finite values for the options. Within this framework, options with different strikes and maturities for one stock rely on a single parameter -- the standard deviation of the Student's t-distribution for unit period. We provide a study which shows that the distribution support width has weak influence on the option prices for certain range of values of the width. It is furthermore shown that such family of truncated distributions approximately satisfies the no-arbitrage principle and the put-call parity. The relevance of the pricing procedure is empirically verified by obtaining remarkably good match of the numerically computed values by our scheme to real market data.

Summary

We haven't generated a summary for this paper yet.