Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reaching Human-level Performance in Automatic Grammatical Error Correction: An Empirical Study (1807.01270v5)

Published 3 Jul 2018 in cs.CL and cs.AI

Abstract: Neural sequence-to-sequence (seq2seq) approaches have proven to be successful in grammatical error correction (GEC). Based on the seq2seq framework, we propose a novel fluency boost learning and inference mechanism. Fluency boosting learning generates diverse error-corrected sentence pairs during training, enabling the error correction model to learn how to improve a sentence's fluency from more instances, while fluency boosting inference allows the model to correct a sentence incrementally with multiple inference steps. Combining fluency boost learning and inference with convolutional seq2seq models, our approach achieves the state-of-the-art performance: 75.72 (F_{0.5}) on CoNLL-2014 10 annotation dataset and 62.42 (GLEU) on JFLEG test set respectively, becoming the first GEC system that reaches human-level performance (72.58 for CoNLL and 62.37 for JFLEG) on both of the benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tao Ge (53 papers)
  2. Furu Wei (291 papers)
  3. Ming Zhou (182 papers)
Citations (84)