Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved training of neural trans-dimensional random field language models with dynamic noise-contrastive estimation (1807.00993v1)

Published 3 Jul 2018 in cs.CL and stat.ML

Abstract: A new whole-sentence LLM - neural trans-dimensional random field LLM (neural TRF LM), where sentences are modeled as a collection of random fields, and the potential function is defined by a neural network, has been introduced and successfully trained by noise-contrastive estimation (NCE). In this paper, we extend NCE and propose dynamic noise-contrastive estimation (DNCE) to solve the two problems observed in NCE training. First, a dynamic noise distribution is introduced and trained simultaneously to converge to the data distribution. This helps to significantly cut down the noise sample number used in NCE and reduce the training cost. Second, DNCE discriminates between sentences generated from the noise distribution and sentences generated from the interpolation of the data distribution and the noise distribution. This alleviates the overfitting problem caused by the sparseness of the training set. With DNCE, we can successfully and efficiently train neural TRF LMs on large corpus (about 0.8 billion words) with large vocabulary (about 568 K words). Neural TRF LMs perform as good as LSTM LMs with less parameters and being 5x~114x faster in rescoring sentences. Interpolating neural TRF LMs with LSTM LMs and n-gram LMs can further reduce the error rates.

Citations (14)

Summary

We haven't generated a summary for this paper yet.