Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Inference Under Heteroskedasticity via the Hadamard Estimator

Published 1 Jul 2018 in math.ST, stat.ME, and stat.TH | (1807.00347v2)

Abstract: Drawing statistical inferences from large datasets in a model-robust way is an important problem in statistics and data science. In this paper, we propose methods that are robust to large and unequal noise in different observational units (i.e., heteroskedasticity) for statistical inference in linear regression. We leverage the Hadamard estimator, which is unbiased for the variances of ordinary least-squares regression. This is in contrast to the popular White's sandwich estimator, which can be substantially biased in high dimensions. We propose to estimate the signal strength, noise level, signal-to-noise ratio, and mean squared error via the Hadamard estimator. We develop a new degrees of freedom adjustment that gives more accurate confidence intervals than variants of White's sandwich estimator. Moreover, we provide conditions ensuring the estimator is well-defined, by studying a new random matrix ensemble in which the entries of a random orthogonal projection matrix are squared. We also show approximate normality, using the second-order Poincare inequality. Our work provides improved statistical theory and methods for linear regression in high dimensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.