Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Dispatcher for Large Scale GraphProcessing on OpenCL-based FPGAs (1806.11509v1)

Published 3 Jun 2018 in cs.DC

Abstract: High parallel framework has been proved to be very suitable for graph processing. There are various work to optimize the implementation in FPGAs, a pipeline parallel device. The key to make use of the parallel performance of FPGAs is to process graph data in pipeline model and take advantage of on-chip memory to realize necessary locality process. This paper proposes a modularize graph processing framework, which focus on the whole executing procedure with the extremely different degree of parallelism. The framework has three contributions. First, the combination of vertex-centric and edge-centric processing framework can been adjusting in the executing procedure to accommodate top-down algorithm and bottom-up algorithm. Second, owing to the pipeline parallel and finite on-chip memory accelerator, the novel edge-block, a block consist of edges vertex, achieve optimizing the way to utilize the on-chip memory to group the edges and stream the edges in a block to realize the stream pattern to pipeline parallel processing. Third, depending to the analysis of the block structure of nature graph and the executing characteristics during graph processing, we design a novel conversion dispatcher to change processing module, to match the corresponding exchange point.

Citations (6)

Summary

We haven't generated a summary for this paper yet.