Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Direct Acceleration of SAGA using Sampled Negative Momentum (1806.11048v4)

Published 28 Jun 2018 in cs.LG and stat.ML

Abstract: Variance reduction is a simple and effective technique that accelerates convex (or non-convex) stochastic optimization. Among existing variance reduction methods, SVRG and SAGA adopt unbiased gradient estimators and are the most popular variance reduction methods in recent years. Although various accelerated variants of SVRG (e.g., Katyusha and Acc-Prox-SVRG) have been proposed, the direct acceleration of SAGA still remains unknown. In this paper, we propose a directly accelerated variant of SAGA using a novel Sampled Negative Momentum (SSNM), which achieves the best known oracle complexity for strongly convex problems (with known strong convexity parameter). Consequently, our work fills the void of directly accelerated SAGA.

Citations (44)

Summary

We haven't generated a summary for this paper yet.