Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Spatio-Temporal Human Track Structure for Action Localization (1806.11008v1)

Published 28 Jun 2018 in cs.CV

Abstract: This paper addresses spatio-temporal localization of human actions in video. In order to localize actions in time, we propose a recurrent localization network (RecLNet) designed to model the temporal structure of actions on the level of person tracks. Our model is trained to simultaneously recognize and localize action classes in time and is based on two layer gated recurrent units (GRU) applied separately to two streams, i.e. appearance and optical flow streams. When used together with state-of-the-art person detection and tracking, our model is shown to improve substantially spatio-temporal action localization in videos. The gain is shown to be mainly due to improved temporal localization. We evaluate our method on two recent datasets for spatio-temporal action localization, UCF101-24 and DALY, demonstrating a significant improvement of the state of the art.

Citations (3)

Summary

We haven't generated a summary for this paper yet.