Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fiber product homotopy method for multiparameter eigenvalue problems (1806.10578v2)

Published 27 Jun 2018 in math.NA and cs.NA

Abstract: We develop a new homotopy method for solving multiparameter eigenvalue problems (MEPs) called the fiber product homotopy method. For a $k$-parameter eigenvalue problem with matrices of sizes $n_1,\dots ,n_k = O(n)$, fiber product homotopy method requires deformation of $O(1)$ linear equations, while existing homotopy methods for MEPs require $O(n)$ nonlinear equations. We show that the fiber product homotopy method theoretically finds all eigenpairs of an MEP with probability one. It is especially well-suited for dimension-deficient singular MEPs, a weakness of all other existing methods, as the fiber product homotopy method is provably convergent with probability one for such problems as well, a fact borne out by numerical experiments. More generally, our numerical experiments indicate that the fiber product homotopy method significantly outperforms the standard Delta method in terms of accuracy, with consistent backward errors on the order of $10{-16}$, even for dimension-deficient singular problems, and without any use of extended precision. In terms of speed, it significantly outperforms previous homotopy-based methods on all problems and outperforms the Delta method on larger problems, and is also highly parallelizable. We show that the fiber product MEP that we solve in the fiber product homotopy method, although mathematically equivalent to a standard MEP, is typically a much better conditioned problem.

Citations (7)

Summary

We haven't generated a summary for this paper yet.