Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Modal Chinese Poetry Generation Model (1806.09792v1)

Published 26 Jun 2018 in cs.CL

Abstract: Recent studies in sequence-to-sequence learning demonstrate that RNN encoder-decoder structure can successfully generate Chinese poetry. However, existing methods can only generate poetry with a given first line or user's intent theme. In this paper, we proposed a three-stage multi-modal Chinese poetry generation approach. Given a picture, the first line, the title and the other lines of the poem are successively generated in three stages. According to the characteristics of Chinese poems, we propose a hierarchy-attention seq2seq model which can effectively capture character, phrase, and sentence information between contexts and improve the symmetry delivered in poems. In addition, the Latent Dirichlet allocation (LDA) model is utilized for title generation and improve the relevance of the whole poem and the title. Compared with strong baseline, the experimental results demonstrate the effectiveness of our approach, using machine evaluations as well as human judgments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Dayiheng Liu (75 papers)
  2. Quan Guo (39 papers)
  3. Wubo Li (8 papers)
  4. Jiancheng Lv (99 papers)
Citations (26)