Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-position Activity Recognition with Stratified Transfer Learning (1806.09776v2)

Published 26 Jun 2018 in cs.CV

Abstract: Human activity recognition aims to recognize the activities of daily living by utilizing the sensors on different body parts. However, when the labeled data from a certain body position (i.e. target domain) is missing, how to leverage the data from other positions (i.e. source domain) to help learn the activity labels of this position? When there are several source domains available, it is often difficult to select the most similar source domain to the target domain. With the selected source domain, we need to perform accurate knowledge transfer between domains. Existing methods only learn the global distance between domains while ignoring the local property. In this paper, we propose a \textit{Stratified Transfer Learning} (STL) framework to perform both source domain selection and knowledge transfer. STL is based on our proposed \textit{Stratified} distance to capture the local property of domains. STL consists of two components: Stratified Domain Selection (STL-SDS) can select the most similar source domain to the target domain; Stratified Activity Transfer (STL-SAT) is able to perform accurate knowledge transfer. Extensive experiments on three public activity recognition datasets demonstrate the superiority of STL. Furthermore, we extensively investigate the performance of transfer learning across different degrees of similarities and activity levels between domains. We also discuss the potential applications of STL in other fields of pervasive computing for future research.

Citations (70)

Summary

We haven't generated a summary for this paper yet.