Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modular Flow as a Disentangler (1806.09622v2)

Published 25 Jun 2018 in hep-th

Abstract: In holographic duality, the entanglement entropy of a boundary region is proposed to be dual to the area of an extremal codimension-2 surface that is homologous to the boundary region, known as the Hubeny-Rangamani-Takayanagi (HRT) surface. In this paper, we study when the HRT surfaces of two boundary subregions R, A are in the same Cauchy slice. This condition is necessary for the subregion-subregion mapping to be local for both subregions and for states to have a tensor network description. To quantify this, we study the area of a surface that is homologous to A and is extremal except at possible intersections with the HRT surface of R (minimizing over all such possible surfaces), which we call the constrained area. We give a boundary proposal for an upper bound of this quantity, a bound which is saturated when the constrained surface intersects the HRT surface of R at a constant angle. This boundary quantity is the minimum entropy of region A in a modular evolved state -- a state that has been evolved unitarily with the modular Hamiltonian of R. We can prove this formula in two boundary dimensions or when the modular Hamiltonian is local. This modular minimal entropy is a boundary quantity that probes bulk causality and, from this quantity, we can extract whether two HRT surfaces are in the future or past of each other. These entropies satisfy some inequalities reminiscent of strong subadditivity and can be used to remove certain corner divergences.

Summary

We haven't generated a summary for this paper yet.