Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Retweet Us, We Will Retweet You: Spotting Collusive Retweeters Involved in Blackmarket Services (1806.08979v1)

Published 23 Jun 2018 in cs.SI

Abstract: Twitter has increasingly become a popular platform to share news and user opinion. A tweet is considered to be important if it receives high number of affirmative reactions from other Twitter users via Retweets. Retweet count is thus considered as a surrogate measure for positive crowd-sourced reactions - high number of retweets of a tweet aid in making its topic trending. This in turn bolsters the social reputation of the author of the tweet. Since social reputation/impact of users/tweets influences many decisions (such as promoting brands, advertisement etc.), several blackmarket syndicates have actively been engaged in producing fake retweets in a collusive manner. Users who want to boost the impact of their tweets approach the blackmarket services, and gain retweets for their own tweets by either paying money (Premium Services) or by retweeting other customers' tweets. Thus they become customers of blackmarket syndicates and engage in fake activities. Interestingly, these customers are neither bots, nor even fake users - they are usually normal human beings; they express a mix of organic and inorganic retweeting activities, and there is no synchronicity across their behaviors. In this paper, we make a first attempt to investigate such blackmarket customers engaged in producing fake retweets. We collected and annotated a novel dataset comprising of customers of many blackmarket services and show how their social behavior differs from genuine users. We then use state-of-the-art supervised models to detect three types of customers (bots, promotional, normal) and genuine users. We achieve a Macro F1-score of 0.87 with SVM, outperforming four other baselines significantly. We further design a browser extension, SCoRe which, given the link of a tweet, spots its fake retweeters in real-time. We also collected users' feedback on the performance of SCoRe and obtained 85% accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hridoy Sankar Dutta (8 papers)
  2. Aditya Chetan (4 papers)
  3. Brihi Joshi (13 papers)
  4. Tanmoy Chakraborty (225 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.