Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge and Central Cloud Computing: A Perfect Pairing for High Energy Efficiency and Low-latency (1806.08943v2)

Published 23 Jun 2018 in cs.NI

Abstract: In this paper, we study the coexistence and synergy between edge and central cloud computing in a heterogeneous cellular network (HetNet), which contains a multi-antenna macro base station (MBS), multiple multi-antenna small base stations (SBSs) and multiple single-antenna user equipment (UEs). The SBSs are empowered by edge clouds offering limited computing services for UEs, whereas the MBS provides high-performance central cloud computing services to UEs via a restricted multiple-input multiple-output (MIMO) backhaul to their associated SBSs. With processing latency constraints at the central and edge networks, we aim to minimize the system energy consumption used for task offloading and computation. The problem is formulated by jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices, which is {a mixed-integer and non-convex optimization problem}. Based on methods such as decomposition approach and successive pseudoconvex approach, a tractable solution is proposed via an iterative algorithm. The simulation results show that our proposed solution can achieve great performance gain over conventional schemes using edge or central cloud alone. Also, with large-scale antennas at the MBS, the massive MIMO backhaul can significantly reduce the complexity of the proposed algorithm and obtain even better performance.

Citations (60)

Summary

We haven't generated a summary for this paper yet.