Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

The Sparse Manifold Transform (1806.08887v2)

Published 23 Jun 2018 in stat.ML, cs.LG, and eess.IV

Abstract: We present a signal representation framework called the sparse manifold transform that combines key ideas from sparse coding, manifold learning, and slow feature analysis. It turns non-linear transformations in the primary sensory signal space into linear interpolations in a representational embedding space while maintaining approximate invertibility. The sparse manifold transform is an unsupervised and generative framework that explicitly and simultaneously models the sparse discreteness and low-dimensional manifold structure found in natural scenes. When stacked, it also models hierarchical composition. We provide a theoretical description of the transform and demonstrate properties of the learned representation on both synthetic data and natural videos.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.