Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Machine Learning Development and Deployment for Edge Devices (1806.07846v1)

Published 20 Jun 2018 in cs.LG and stat.ML

Abstract: Machine learning (ML), especially deep learning is made possible by the availability of big data, enormous compute power and, often overlooked, development tools or frameworks. As the algorithms become mature and efficient, more and more ML inference is moving out of datacenters/cloud and deployed on edge devices. This model deployment process can be challenging as the deployment environment and requirements can be substantially different from those during model development. In this paper, we propose a new ML development and deployment approach that is specially designed and optimized for inference-only deployment on edge devices. We build a prototype and demonstrate that this approach can address all the deployment challenges and result in more efficient and high-quality solutions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.