Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DEFRAG: Deep Euclidean Feature Representations through Adaptation on the Grassmann Manifold (1806.07688v1)

Published 20 Jun 2018 in cs.CV

Abstract: We propose a novel technique for training deep networks with the objective of obtaining feature representations that exist in a Euclidean space and exhibit strong clustering behavior. Our desired features representations have three traits: they can be compared using a standard Euclidian distance metric, samples from the same class are tightly clustered, and samples from different classes are well separated. However, most deep networks do not enforce such feature representations. The DEFRAG training technique consists of two steps: first good feature clustering behavior is encouraged though an auxiliary loss function based on the Silhouette clustering metric. Then the feature space is retracted onto a Grassmann manifold to ensure that the L_2 Norm forms a similarity metric. The DEFRAG technique achieves state of the art results on standard classification datasets using a relatively small network architecture with significantly fewer parameters than many standard networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.