Regression adjustment in completely randomized experiments with a diverging number of covariates
Abstract: Randomized experiments have become important tools in empirical research. In a completely randomized treatment-control experiment, the simple difference in means of the outcome is unbiased for the average treatment effect, and covariate adjustment can further improve the efficiency without assuming a correctly specified outcome model. In modern applications, experimenters often have access to many covariates, motivating the need for a theory of covariate adjustment under the asymptotic regime with a diverging number of covariates. We study the asymptotic properties of covariate adjustment under the potential outcomes model and propose a bias-corrected estimator that is consistent and asymptotically normal under weaker conditions. Our theory is purely randomization-based without imposing any parametric outcome model assumptions. To prove the theoretical results, we develop novel vector and matrix concentration inequalities for sampling without replacement.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.