Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regression adjustment in completely randomized experiments with a diverging number of covariates (1806.07585v4)

Published 20 Jun 2018 in math.ST and stat.TH

Abstract: Randomized experiments have become important tools in empirical research. In a completely randomized treatment-control experiment, the simple difference in means of the outcome is unbiased for the average treatment effect, and covariate adjustment can further improve the efficiency without assuming a correctly specified outcome model. In modern applications, experimenters often have access to many covariates, motivating the need for a theory of covariate adjustment under the asymptotic regime with a diverging number of covariates. We study the asymptotic properties of covariate adjustment under the potential outcomes model and propose a bias-corrected estimator that is consistent and asymptotically normal under weaker conditions. Our theory is purely randomization-based without imposing any parametric outcome model assumptions. To prove the theoretical results, we develop novel vector and matrix concentration inequalities for sampling without replacement.

Summary

We haven't generated a summary for this paper yet.