Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation from Non-Linear Observations via Convex Programming with Application to Bilinear Regression (1806.07307v2)

Published 19 Jun 2018 in stat.ML, cs.LG, math.OC, and stat.CO

Abstract: We propose a computationally efficient estimator, formulated as a convex program, for a broad class of non-linear regression problems that involve difference of convex (DC) non-linearities. The proposed method can be viewed as a significant extension of the "anchored regression" method formulated and analyzed in [10] for regression with convex non-linearities. Our main assumption, in addition to other mild statistical and computational assumptions, is availability of a certain approximation oracle for the average of the gradients of the observation functions at a ground truth. Under this assumption and using a PAC-Bayesian analysis we show that the proposed estimator produces an accurate estimate with high probability. As a concrete example, we study the proposed framework in the bilinear regression problem with Gaussian factors and quantify a sufficient sample complexity for exact recovery. Furthermore, we describe a computationally tractable scheme that provably produces the required approximation oracle in the considered bilinear regression problem.

Citations (4)

Summary

We haven't generated a summary for this paper yet.