Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributional Advantage Actor-Critic (1806.06914v1)

Published 10 Jun 2018 in cs.LG, cs.AI, and stat.ML

Abstract: In traditional reinforcement learning, an agent maximizes the reward collected during its interaction with the environment by approximating the optimal policy through the estimation of value functions. Typically, given a state s and action a, the corresponding value is the expected discounted sum of rewards. The optimal action is then chosen to be the action a with the largest value estimated by value function. However, recent developments have shown both theoretical and experimental evidence of superior performance when value function is replaced with value distribution in context of deep Q learning [1]. In this paper, we develop a new algorithm that combines advantage actor-critic with value distribution estimated by quantile regression. We evaluated this new algorithm, termed Distributional Advantage Actor-Critic (DA2C or QR-A2C) on a variety of tasks, and observed it to achieve at least as good as baseline algorithms, and outperforming baseline in some tasks with smaller variance and increased stability.

Citations (6)

Summary

We haven't generated a summary for this paper yet.