Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Online Prediction Algorithm for Reinforcement Learning with Linear Function Approximation using Cross Entropy Method (1806.06720v1)

Published 15 Jun 2018 in cs.LG and stat.ML

Abstract: In this paper, we provide two new stable online algorithms for the problem of prediction in reinforcement learning, \emph{i.e.}, estimating the value function of a model-free Markov reward process using the linear function approximation architecture and with memory and computation costs scaling quadratically in the size of the feature set. The algorithms employ the multi-timescale stochastic approximation variant of the very popular cross entropy (CE) optimization method which is a model based search method to find the global optimum of a real-valued function. A proof of convergence of the algorithms using the ODE method is provided. We supplement our theoretical results with experimental comparisons. The algorithms achieve good performance fairly consistently on many RL benchmark problems with regards to computational efficiency, accuracy and stability.

Citations (12)

Summary

We haven't generated a summary for this paper yet.