Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the algorithmic complexity of finding hamiltonian cycles in special classes of planar cubic graphs (1806.06713v1)

Published 15 Jun 2018 in math.CO

Abstract: It is a well-known fact that hamiltonicity in planar cubic graphs is an NP-complete problem. This implies that the existence of an A-trail in plane eulerian graphs is also an NP-complete problem even if restricted to planar 3-connected eulerian graphs. In this paper we deal with hamiltonicity in planar cubic graphs G having a facial 2-factor Q via (quasi) spanning trees of faces in G/Q and study the algorithmic complexity of finding such (quasi) spanning trees of faces. We show, in particular, that if Barnette's Conjecture is false, then hamiltonicity in 3-connected planar cubic bipartite graphs is an NP-complete problem.

Summary

We haven't generated a summary for this paper yet.