Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Prediction of Switching Graph Labelings with Cluster Specialists (1806.06439v3)

Published 17 Jun 2018 in cs.LG and stat.ML

Abstract: We address the problem of predicting the labeling of a graph in an online setting when the labeling is changing over time. We present an algorithm based on a specialist approach; we develop the machinery of cluster specialists which probabilistically exploits the cluster structure in the graph. Our algorithm has two variants, one of which surprisingly only requires $\mathcal{O}(\log n)$ time on any trial $t$ on an $n$-vertex graph, an exponential speed up over existing methods. We prove switching mistake-bound guarantees for both variants of our algorithm. Furthermore these mistake bounds smoothly vary with the magnitude of the change between successive labelings. We perform experiments on Chicago Divvy Bicycle Sharing data and show that our algorithms significantly outperform an existing algorithm (a kernelized Perceptron) as well as several natural benchmarks.

Summary

We haven't generated a summary for this paper yet.