Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Crime Event Embedding with Unsupervised Feature Selection (1806.06095v4)

Published 15 Jun 2018 in stat.ML and cs.LG

Abstract: We present a novel event embedding algorithm for crime data that can jointly capture time, location, and the complex free-text component of each event. The embedding is achieved by regularized Restricted Boltzmann Machines (RBMs), and we introduce a new way to regularize by imposing a $\ell_1$ penalty on the conditional distributions of the observed variables of RBMs. This choice of regularization performs feature selection and it also leads to efficient computation since the gradient can be computed in a closed form. The feature selection forces embedding to be based on the most important keywords, which captures the common modus operandi (M. O.) in crime series. Using numerical experiments on a large-scale crime dataset, we show that our regularized RBMs can achieve better event embedding and the selected features are highly interpretable from human understanding.

Citations (19)

Summary

We haven't generated a summary for this paper yet.