Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bass diffusion model on finite Barabasi-Albert networks (1806.05959v2)

Published 6 Jun 2018 in physics.soc-ph and cs.SI

Abstract: Using a mean-field network formulation of the Bass innovation diffusion model and exact results by Fotouhi and Rabbat on the degree correlations of Barabasi-Albert networks, we compute the times of the diffusion peak and compare them with those on scale-free networks which have the same scale-free exponent but different assortativity properties. We compare our results with those obtained by Caldarelli et al. for the SIS epidemic model with the spectral method applied to adjacency matrices. It turns out that diffusion times on finite Barabasi-Albert networks are at a minimum. This may be due to a little-known property of these networks: although the value of the assortativity coefficient is close to zero, they look disassortative if one considers only a bounded range of degrees, including the smallest ones, and slightly assortative on the range of the higher degrees. We also find that if the trickle-down character of the diffusion process is enhanced by a larger initial stimulus on the hubs (via a inhomogeneous linear term in the Bass model), the relative difference between the diffusion times for BA networks and uncorrelated networks is even larger, reaching for instance the 34% in a typical case on a network with $104$ nodes.

Citations (19)

Summary

We haven't generated a summary for this paper yet.