Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-level preconditioning for Ridge Regression (1806.05826v2)

Published 15 Jun 2018 in cs.NA

Abstract: Solving linear systems is often the computational bottleneck in real-life problems. Iterative solvers are the only option due to the complexity of direct algorithms or because the system matrix is not explicitly known. Here, we develop a two-level preconditioner for regularized least squares linear systems involving a feature or data matrix. Variants of this linear system may appear in machine learning applications, such as ridge regression, logistic regression, support vector machines and Bayesian regression. We use clustering algorithms to create a coarser level that preserves the principal components of the covariance or Gram matrix. This coarser level approximates the dominant eigenvectors and is used to build a subspace preconditioner accelerating the Conjugate Gradient method. We observed speed-ups for artificial and real-life data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.