Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic distribution of least square estimators for linear models with dependent errors (1806.05287v2)

Published 13 Jun 2018 in math.ST, math.PR, stat.AP, and stat.TH

Abstract: In this paper, we consider the usual linear regression model in the case where the error process is assumed strictly stationary. We use a result from Hannan (1973), who proved a Central Limit Theorem for the usual least square estimator under general conditions on the design and on the error process. Whatever the design satisfying Hannan's conditions, we define an estimator of the covariance matrix and we prove its consistency under very mild conditions. As an application, we show how to modify the usual tests on the linear model in this dependent context, in such a way that the type-I error rate remains asymptotically correct, and we illustrate the performance of this procedure through different sets of simulations.

Summary

We haven't generated a summary for this paper yet.