Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introducing user-prescribed constraints in Markov chains for nonlinear dimensionality reduction (1806.05096v2)

Published 13 Jun 2018 in cs.LG and stat.ML

Abstract: Stochastic kernel based dimensionality reduction approaches have become popular in the last decade. The central component of many of these methods is a symmetric kernel that quantifies the vicinity between pairs of data points and a kernel-induced Markov chain on the data. Typically, the Markov chain is fully specified by the kernel through row normalization. However, in many cases, it is desirable to impose user-specified stationary-state and dynamical constraints on the Markov chain. Unfortunately, no systematic framework exists to impose such user-defined constraints. Here, we introduce a path entropy maximization based approach to derive the transition probabilities of Markov chains using a kernel and additional user-specified constraints. We illustrate the usefulness of these Markov chains with examples.

Citations (6)

Summary

We haven't generated a summary for this paper yet.