Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Only Bayes should learn a manifold (on the estimation of differential geometric structure from data) (1806.04994v3)

Published 13 Jun 2018 in stat.ML and cs.LG

Abstract: We investigate learning of the differential geometric structure of a data manifold embedded in a high-dimensional Euclidean space. We first analyze kernel-based algorithms and show that under the usual regularizations, non-probabilistic methods cannot recover the differential geometric structure, but instead find mostly linear manifolds or spaces equipped with teleports. To properly learn the differential geometric structure, non-probabilistic methods must apply regularizations that enforce large gradients, which go against common wisdom. We repeat the analysis for probabilistic methods and find that under reasonable priors, the geometric structure can be recovered. Fully exploiting the recovered structure, however, requires the development of stochastic extensions to classic Riemannian geometry. We take early steps in that regard. Finally, we partly extend the analysis to modern models based on neural networks, thereby highlighting geometric and probabilistic shortcomings of current deep generative models.

Citations (29)

Summary

We haven't generated a summary for this paper yet.