Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expression Empowered ResiDen Network for Facial Action Unit Detection (1806.04957v1)

Published 13 Jun 2018 in cs.CV

Abstract: The paper explores the topic of Facial Action Unit (FAU) detection in the wild. In particular, we are interested in answering the following questions: (1) how useful are residual connections across dense blocks for face analysis? (2) how useful is the information from a network trained for categorical Facial Expression Recognition (FER) for the task of FAU detection? The proposed network (ResiDen) exploits dense blocks along with residual connections and uses auxiliary information from a FER network. The experiments are performed on the EmotionNet and DISFA datasets. The experiments show the usefulness of facial expression information for AU detection. The proposed network achieves state-of-art results on the two databases. Analysis of the results for cross database protocol shows the effectiveness of the network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shreyank Jyoti (2 papers)
  2. Abhinav Dhall (55 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.