Estimates for character sums in finite fields of order $p^2$ and $p^3$ (1806.04783v1)
Abstract: Let $p$ be a prime number, $\mathbb{F}{pn}$ be the finite field of order $pn$, and ${\omega_1,\ldots\omega_n}$ be a basis of $\mathbb{F}{pn}$ over $\mathbb{F}p$. Let, further, $N_i,H_i$ be integers such that $1\leq H_i\leq p$, $\,\,i=1,\ldots,n$. Define $n$-dimensional parallelepiped $B\subseteq\mathbb{F}{pn}$ as follows: $$B=\left{\sum_{i=1}nx_i\omega_i \,:\, N_i+1\leq x_i\leq N_i+H_i, \,\,\, 1\leq i\leq n\right}. $$ Let $n\in{2,3}$, $\chi$ be a nontrivial multiplicative character of $\mathbb{F}{pn}$ and $|B|\geq p{n(1/4+\varepsilon)}$, and let us assume that $H_1\leq\ldots\leq H_n$. Then we prove that $$\left|\sum{x\in B}\chi(x)\right|\ll_{\varepsilon} |B|p{-\varepsilon2/12}, $$ if $\chi|{\mathbb{F}_p}$ is not identical, and $$\left|\sum{x\in B}\chi(x)\right|\ll_{\varepsilon} |B|p{-\varepsilon2/12}+|B\cap \omega_n\mathbb{F}_p| $$ otherwise.