Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase transitions in spiked matrix estimation: information-theoretic analysis (1806.04343v3)

Published 12 Jun 2018 in math.PR, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We study here the so-called spiked Wigner and Wishart models, where one observes a low-rank matrix perturbed by some Gaussian noise. These models encompass many classical statistical tasks such as sparse PCA, submatrix localization, community detection or Gaussian mixture clustering. The goal of these notes is to present in a unified manner recent results (as well as new developments) on the information-theoretic limits of these spiked matrix models. We compute the minimal mean squared error for the estimation of the low-rank signal and compare it to the performance of spectral estimators and message passing algorithms. Phase transition phenomena are observed: depending on the noise level it is either impossible, easy (i.e. using polynomial-time estimators) or hard (information-theoretically possible, but no efficient algorithm is known to succeed) to recover the signal.

Citations (18)

Summary

We haven't generated a summary for this paper yet.