Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power means of probability measures and Ando-Hiai inequality (1806.04210v2)

Published 11 Jun 2018 in math.FA

Abstract: Let $\mu$ be a probability measure of compact support on the set $\mathbb{P}n$ of all positive definite matrices, let $t\in(0,1]$, and let $P_t(\mu)$ be the unique positive solution of $X=\int{\mathbb{P}n}X\sharp_t Z d\mu(Z)$. In this paper, we show that $$ P_t(\mu)\leq I\quad \Longrightarrow\quad P{\frac{t}{p}}(\nu)\leq P_t(\mu)$$ for every $p\geq1$, where $\nu(Z)=\mu(Z{1/p})$. This provides an extension of the Ando--Hiai inequality for matrix power means. Moreover, we prove that if $\Phi:\mathbb{M}_n\to\mathbb{M}_m$ is a unital positive linear map, then $\Phi(P_t(\mu))\leq P_t(\nu)$ for all $t\in[-1,1]\backslash{0}$, where $\nu$ is a certain measure.

Summary

We haven't generated a summary for this paper yet.