Papers
Topics
Authors
Recent
2000 character limit reached

Inhibition of spreading in quantum random walks due to quenched Poisson-distributed disorder

Published 11 Jun 2018 in quant-ph | (1806.04024v2)

Abstract: We consider a quantum particle (walker) on a line who coherently chooses to jump to the left or right depending on the result of toss of a quantum coin. The lengths of the jumps are considered to be independent and identically distributed quenched Poisson random variables. We find that the spread of the walker is significantly inhibited, whereby it resides in the near-origin region, with respect to the case when there is no disorder. The scaling exponent of the quenched-averaged dispersion of the walker is sub-ballistic but super-diffusive. We also show that the features are universal to a class of sub- and super-Poissonian distributed quenched randomized jumps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.