Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Flow-based Multi-level Hybrid Intrusion Detection System for Software-Defined Networks (1806.03875v1)

Published 11 Jun 2018 in cs.CR and cs.NI

Abstract: Software-Defined Networking (SDN) is a novel networking paradigm that provides enhanced programming abilities, which can be used to solve traditional security challenges on the basis of more efficient approaches. The most important element in the SDN paradigm is the controller, which is responsible for managing the flows of each correspondence forwarding element (switch or router). Flow statistics provided by the controller are considered to be useful information that can be used to develop a network-based intrusion detection system. Therefore, in this paper, we propose a 5-level hybrid classification system based on flow statistics in order to attain an improvement in the overall accuracy of the system. For the first level, we employ the k-Nearest Neighbor approach (kNN); for the second level, we use the Extreme Learning Machine (ELM); and for the remaining levels, we utilize the Hierarchical Extreme Learning Machine (H-ELM) approach. In comparison with conventional supervised machine learning algorithms based on the NSL-KDD benchmark dataset, the experimental study showed that our system achieves the highest level of accuracy (84.29%). Therefore, our approach presents an efficient approach for intrusion detection in SDNs.

Citations (51)

Summary

We haven't generated a summary for this paper yet.