Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interdependent Values without Single-Crossing (1806.03865v1)

Published 11 Jun 2018 in cs.GT

Abstract: We consider a setting where an auctioneer sells a single item to $n$ potential agents with {\em interdependent values}. That is, each agent has her own private signal, and the valuation of each agent is a known function of all $n$ private signals. This captures settings such as valuations for artwork, oil drilling rights, broadcast rights, and many more. In the interdependent value setting, all previous work has assumed a so-called {\sl single-crossing condition}. Single-crossing means that the impact of agent $i$'s private signal, $s_i$, on her own valuation is greater than the impact of $s_i$ on the valuation of any other agent. It is known that without the single-crossing condition an efficient outcome cannot be obtained. We study welfare maximization for interdependent valuations through the lens of approximation. We show that, in general, without the single-crossing condition, one cannot hope to approximate the optimal social welfare any better than the approximation given by assigning the item to a random bidder. Consequently, we introduce a relaxed version of single-crossing, {\sl $c$-single-crossing}, parameterized by $c\geq 1$, which means that the impact of $s_i$ on the valuation of agent $i$ is at least $1/c$ times the impact of $s_i$ on the valuation of any other agent ($c=1$ is single-crossing). Using this parameterized notion, we obtain a host of positive results. We propose a prior-free deterministic mechanism that gives an $(n-1)c$-approximation guarantee to welfare. We then show that a random version of the proposed mechanism gives a prior-free universally truthful $2c$-approximation to the optimal welfare for any concave $c$-single crossing setting (and a $2\sqrt{n}c{3/2}$-approximation in the absence of concavity). We extend this mechanism to a universally truthful mechanism that gives $O(c2)$-approximation to the optimal revenue.

Citations (20)

Summary

We haven't generated a summary for this paper yet.