Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consistent Position Bias Estimation without Online Interventions for Learning-to-Rank (1806.03555v1)

Published 9 Jun 2018 in cs.LG, cs.IR, and stat.ML

Abstract: Presentation bias is one of the key challenges when learning from implicit feedback in search engines, as it confounds the relevance signal with uninformative signals due to position in the ranking, saliency, and other presentation factors. While it was recently shown how counterfactual learning-to-rank (LTR) approaches \cite{Joachims/etal/17a} can provably overcome presentation bias if observation propensities are known, it remains to show how to accurately estimate these propensities. In this paper, we propose the first method for producing consistent propensity estimates without manual relevance judgments, disruptive interventions, or restrictive relevance modeling assumptions. We merely require that we have implicit feedback data from multiple different ranking functions. Furthermore, we argue that our estimation technique applies to an extended class of Contextual Position-Based Propensity Models, where propensities not only depend on position but also on observable features of the query and document. Initial simulation studies confirm that the approach is scalable, accurate, and robust.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Aman Agarwal (17 papers)
  2. Ivan Zaitsev (5 papers)
  3. Thorsten Joachims (66 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.