Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kronecker weights for instability analysis of Markov jump linear systems (1806.03364v1)

Published 8 Jun 2018 in math.OC and cs.SY

Abstract: In this paper, we analyze the instability of continuous-time Markov jump linear systems. Although there exist several effective criteria for the stability of Markov jump linear systems, there is a lack of methodologies for verifying their instability. In this paper, we present a novel criterion for the exponential mean instability of Markov jump linear systems. The main tool of our analysis is an auxiliary Markov jump linear system, which results from taking the Kronecker products of the given system matrices and a set of appropriate matrix weights. We furthermore show that the problem of finding matrix weights for tighter instability analysis can be transformed to the spectral optimization of an affine matrix family, which can be efficiently performed by gradient-based non-smooth optimization algorithms. We confirm the effectiveness of the proposed methods by numerical examples.

Citations (6)

Summary

We haven't generated a summary for this paper yet.